行测数量关系基础运算问题三:约数与倍数问题

2022/02 作者:ihunter 0 0

  行测中的基础运算问题专指一些简单的数学计算或应用问题。它是数学运算的主要考查题型之一,目前作为单独考点的可能性虽然较低,经常与其他知识点结合起来考查。常见题型有:纯计算题、数列与平均数、约数与倍数、周期问题等。


  本次给大家具体介绍的是约数与倍数问题。


  一、要点简介


  a÷b=c,整数a除以整数b(b≠0)所得的商正好是整数c而没有余数,我们就说a能被b整除,或b能整除a。a称为b与c的倍数,b与c称为a的约数。


  两个或多个整数公有的约数叫作它们的公约数。两个或多个整数的公约数里最大的那一个叫作它们的最大公约数。


  两个或多个整数公有的倍数叫作它们的公倍数。两个或多个整数的公倍数里最小的那一个叫作它们的最小公倍数。


  二、经典例题


  【例1】


  某政府机关内甲、乙两部门通过门户网站定期向社会发布消息,甲部门每隔2天、乙部门每隔3天有一个发布日,节假日无休。则甲、乙两部门在一个自然月内最多有几天同时为发布日(  )


  A.5                        B.2                   C.6                          D.3


  【解析】


  甲部门每隔2天相当于每3天发布一次,乙部门每隔3天相当于每4天发布一次,3和4的最小公倍数是12,则甲、乙12天就会同时发布一次。一个自然月最多有31天,假设甲、乙两部门1号同时发布一次,该自然月最多还有30天,30÷12=2……6,还可以同时发布两次。那么一个自然月最多有3天是同时发布消息的。因此D项当选。


  【一本通点睛】


  1.知识点:每隔+1=每;“同时……”一般涉及求最小公倍数。但是该题目除了掌握好以上两个知识点外,还需要在选择上注意“1号两个部门同时发布一次”。


  2.最小公倍数在工程问题、经济问题中的应用更为广泛,必须熟练掌握。


  【例2】


  企业某次培训的员工中有369名来自A部门,412名来自B部门。现分批对所有人进行培训,要求每批人数相同且批次尽可能少。如果有且仅有一批培训对象同时包含来自A和B部门的员工,那么该批中有多少人来自B部门(  )


  A.14             B.32            C.57            D.65


  【解析】


  培训的员工总数为369+412=781,因为要求每批人数相同,所以将781因数分解:781=71×11,又要求批次尽可能少,所以11为批次数。已知有且仅有一批培训对象同时包含来自A和B部门的员工,所以只有一批71人由两个部门组合而成,其余每批71人均来自同一部门。B部门的员工可分为:412÷71=5(批)……57(人),所以同时包含来自A和B部门的那批员工中有57人来自B部门。因此C项当选。


赞(0) 更多分享

上篇: 行测定义判断解题技巧梳理四:选项对比法
下篇: 行测资料分析之判断比重变化